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Abstract

E-commerce product understanding demands
by nature, strong multimodal comprehen-
sion from text, images, and structured at-
tributes. General-purpose Vision–Language
Models (VLMs) enable generalizable multi-
modal latent modeling, yet there is no docu-
mented, well-known strategy for adapting them
to the attribute-centric, multi-image, and noisy
nature of e-commerce data, without sacrificing
general performance. In this work, we show
through a large-scale experimental study, how
targeted adaptation of general VLMs can sub-
stantially improve e-commerce performance
while preserving broad multimodal capabili-
ties. Furthermore, we propose a novel exten-
sive evaluation suite covering deep product un-
derstanding, strict instruction following, and
dynamic attribute extraction.

1 Introduction

Deep e-commerce product understanding is inher-
ently multimodal. While today’s search works
primarily through matching the textual part of a
listing, images of an item, its packaging, or gen-
eral visuals play a large role in how customers
evaluate and select the item they want. Recent ad-
vancements in Large Language Models (LLMs)
(Dubey et al., 2024; Yang et al., 2024; Mistral AI,
2024), have shown strong results on e-commerce
tasks, with some specific approaches for domain-
specific customization (Peng et al., 2024; Herold
et al., 2025). However, translating these gains into
the vision–language setting, like we do in this pa-
per, remains a considerable challenge.

With the advent of general-purpose Vi-
sion–Language Models (VLMs) such as LLaVA-
OneVision (Li et al., 2024a), Qwen3-VL
(QwenTeam, 2025), InternVL3 (OpenGVLab-
Team, 2024), and Gemma3 (Gemma-Team, 2025),
deploying multimodal systems in e-commerce
has become feasible. Nevertheless, we see a need

Figure 1: Output of our E-commerce Adapted VLMs
compared against same size LLaVA-OneVision. We
show our models ability to more faithfully extract at-
tributes from e-commerce items. In red, we highlight
wrong model predictions that are neither tied to the im-
age nor valid item attributes.

for a reproducible, backbone-agnostic recipe for
adapting VLMs to the demands of e-commerce
attribute-centric reasoning, multi-image aggre-
gation, and robustness to noisy seller-generated
content, without loosing general VLM-capabilities
performance. Moreover, in spite of a large amount
of evaluation sets for text-only shopping tasks (Jin
et al., 2024), rigorous benchmarking of multimodal
shopping assistants remains underdeveloped.

In this paper, we focus on two questions, (i) if
high-performing e-commerce VLMs truly require
a customized LLM, or whether adapting on vision-
focused tasks suffices. And (ii) on the best way to
build a benchmark to assess multiple dimensions
of understanding from extracting product attributes
to category-specific deeper understanding and han-
dling of multi-image tasks. To tackle (i) we per-
form extensive ablations across multiple visual
and text decoders as backbones. Moreover we pro-
pose a new set of multimodal instruction data to
strengthen e-commerce abilities without hindering
general performance, showing adaptation is possi-
ble. To answer (ii), we propose a set of benchmarks
evaluating a broad range of internal use-cases and
real-life online retail scenarios. In summary our
contributions are as follows:

• We show how to adapt existing VLMs to-
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wards the e-commerce domain, taking into
account task-specific features, and demon-
strate it enhances performance on online shop-
ping tasks considerably, without any loss of
capabilities on other domains.

• We design and implement a comprehensive set
of vision, e-commerce benchmarks based on
real production problem statements and data.

• We also evaluate state-of-the-art VLMs across
general-domain and in-domain multimodal
tasks, reporting our adaptation findings across
data mixtures, models sizes and architectures.

All in all we provide insights, evaluation suites and
a proven strategy for an e-commerce adaptation of
VLMs, retaining strong general capabilities.

2 Related Work

e-Commerce Vision Language Models Online
shopping platforms own an enormous quantity of
data which can be leveraged to train LLMs and
VLMs. Among the many applications, the abil-
ity of models to concretely grasp user-uploaded
visual-information, correctly comprehending mul-
timodal product characteristics and being able to
predict them accordingly are vital features in online
marketplace applications. Research efforts such as
Xue et al. (2024); Li et al. (2024b), finetune VLMs
for product understanding and tackle product de-
scription generation exploiting in-context learning
capabilities. Similar e-commerce adaptation works
like Ling et al. (2024) instruction tune Llama-3.2
model with online shopping data. While these are
interesting research directions, none have yet con-
currently studied the effect of multiple pre-trained
multimodal architectures on downstream online
retail performance, all while being able to retain
effectiveness on general purpose multimodal bench-
marks.

E-commerce-specific Evaluation Text-centric
suites (Jin et al., 2024) have helped standardize
measurement of general shop-assistant abilities and
even powered community competitions, but they
operate primarily on textual signals. Similar widely
used datasets evaluate query–product relevance,
review-grounded product Q&A, purchase-intention
comprehension and domain factuality via knowl-
edge graphs (Reddy et al., 2022; Gupta et al., 2019;
Ding et al., 2024; Chen et al., 2025a; Liu et al.,
2025). While general-purpose VLM evaluations

(Fu et al., 2024) stress broader visual-language
understanding, like visual-question answering or
object recognition, they are not tailored to the e-
commerce fine-grained attributes and tool use typi-
cal of retail. In recent research, Ling et al. (2025)
covers some question answering, product classifica-
tion and relevance-related tasks as well as product
relation identification and sentiment analysis and
their dataset, while large-scale and comprehensive,
is built by taking text-only datasets, adding images
and removing the image-text pairs where the im-
ages are redundant, whereas we feel that our setting
of taking image-focused tasks as a starting point is
more naturalistic.

3 Methodology

3.1 Our E-commerce Benchmarks

To tackle the gap in multimodal e-commerce-
specific benchmarks, we propose a set of four eval-
uation suites described below. Each is designed to
tailor internal production use-cases, ranging on a
variety of tasks, categories and metrics.

Aspect Prediction Our Aspect Prediction evalua-
tion set, divided into three different sub-parts. The
first, comprised of 2600 general questions on all e-
commerce categories, and the second two, evaluate
the model’s ability to predict aspects in Fashion,
with and without additional contexts from item title
and category, both with 1600 examples. All are
evaluated through string matching.

Deep Fashion Understanding We design a spe-
cialized benchmark consisting of 3000 samples
divided into three subsets: Apparel Men Shirts and
Women Tops, Handbags, and Sneakers. Each sub-
set targets critical attributes relevant to the product
type, structured into clear classification categories.
Evaluation involves prompting the model to cate-
gorize items precisely according to the provided
attribute classes.

Dynamic Attribute Extraction This evaluation
set comprises 1,000 synthetically generated with
GPT-4o (gpt, 2024), human-verified examples. It
benchmarks a model’s ability to enumerate and
structure all visually grounded attributes from an
image without a predefined schema.

Multi-image Item Intelligence In this dataset
the model is asked to compile a fixed set of at-
tributes related to compliance questions (e.g. brand,
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Figure 2: Visual Verification Pipeline. The figure shows the pipeline we use to create the 4M e-commerce visual
instruction tuning data. We begin by collecting raw listings data from the web (left). We then clean and pre-process
the textual entries. In parallel, we create detailed captions for the corresponding image through InternVL-2.5-26B.
Finally, we provide the captions together with the cleaned listings to Mistral-Small-3-24B to obtain the verified
instructions, used, along with original images, to train our models (shown with fire).

warning labels, ingredients) from multiple prod-
uct items into a structured JSON output, enabling
verification and recall matching processes. 1000
items were sampled to prioritize product categories
with high regulatory requirements (toys, electron-
ics, electrical appliances, cosmetics, etc.). We eval-
uate through LLM-as-a-judge (see e.g. Gu et al.,
2025). More on each set in Appendix A.4.

3.2 Our Approach to E-commerce Adaptation
We first go through our Data Curation pipeline,
VLM Adaptation Training Stages, additional Multi-
Image Item Intelligence specific fine-tuning and the
architectures on which we apply this adaptation.

3.2.1 Internal Data Curation
Raw e-commerce listings data is typically rather
noisy, yet high-quality data is crucial when training
large multimodal models. Here, we show how to
leverage the self-supervised signal inherent in user-
generated listings data and describe our Visual Veri-
fication Pipeline for large-scale data curation, illus-
trated in Figure 2. We begin by collecting nearly
15 million raw listings from online marketplace
websites and select only the primary (main) image
for each listing. Each image is captioned through
InternVL-2.5-26B (Chen et al., 2025b). Alongside,
we extract the user-supplied item aspects from each
listing. Given the generated caption and item as-
pects, we employ Mistral-Small-3-24B (Mistral AI,
2024) to verify which of these aspects can be in-
ferred from the caption and thus from the image
itself. This verification ensures visual-textual cor-
respondence during training. The resulting listings,
enriched with the verified aspects and paired with
their original images, form the high-quality dataset
used to train our multimodal models.

3.2.2 General E-commerce Adaptation
Following LLaVA-OneVision (Li et al., 2024a),
we train our models in three stages: (i) Vision-
Language Alignment, (ii) Mid-Stage Training, and

(iii) Visual Instruction Tuning. For (i) we em-
ploy LLaVA-OneVision set of instructions with
BLIP-LAION 558k corpus (Liu et al., 2023) and
for (ii) their mid-stage mixture (Li et al., 2024a)
removing several subsets that we found low-signal
or redundant.

Visual Instruction Tuning Finally, we con-
duct instruction tuning on (a) a version of the
LLaVA-OneVision single-image mixture, and (b)
∼4M internal e-commerce oriented set of instruc-
tions pictured in Appendix Figure 4. This portion
is partitioned as follows, with percentages equaling
part of e-commerce total: VQA (45%), consists
of free-form, yes/no, image-only questions, full
item description all with and without title & cat-
egory context. Dynamic Attribute Extraction
(30%), containing free-form visual attribute ex-
traction with and without title & category con-
text. Variants include augmenting it with OCR,
prompt constraining text, and any combinations
of these settings. Precise Instruction Following
(12.5%), a set of keyword-conditioned instructions
that require inclusion/avoidance of specific terms
and tasks emphasizing strict form/length control.
Listings (12.5%), comprised of full product list-
ings predictions from an image. Details in Ap-
pendix A.7.

3.2.3 Item Intelligence Fine-Tuning
For the Multi-Image Item Intelligence task, we cu-
rate a fine-tuning dataset of 100,000 items across
relevant categories, each containing multiple im-
ages (median = 5, range = 2–8). Since no labeled
data is available, we generate first annotations us-
ing GPT-4.1 via prompt-engineering. We then en-
hance annotation quality, by refining supervision to
focus on visually and semantically informative re-
gions—often textual or numeric details on product
surfaces. We achieve this employing Qwen2.5-VL-
32B (Bai et al., 2025) to produce precise bounding
boxes, which are post-processed (expanded and
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Vision Encoder | LLM Aspect Prediction Deep Fashion Understanding Dynamic Attribute Extraction

General Fashion Fashion + T&C Apparel Sneakers & Handbags DAE

Internal E-commerce Adaptation
1 SigLIP2 | Llama-3.1-8B 37.7 46.0 51.9 67.0 75.1 59.7
2 SigLIP2 | e-Llama3.1-8B 44.4 52.8 60.4 78.9 79.5 66.1
3 Qwen2.5ViT | e-Llama3.1-8B 53.3 55.1 65.3 71.0 70.1 70.7
4 SigLIP2 | Qwen-3-4B 54.6 60.7 67.5 78.6 80.1 66.5
5 SigLIP2 | Qwen-3-8B 56.2 60.1 68.5 79.8 81.6 68.1
6 SigLIP2 | Lilium-1B 41.0 48.4 54.4 72.2 71.0 66.3
7 SigLIP2 | Lilium-4B 42.3 49.1 56.7 74.7 73.5 68.3
8 SigLIP2 | Lilium-8B 42.4 49.2 55.8 75.2 77.0 68.0
9 SigLIP | Gemma3-4B 54.8 58.3 67.0 78.6 80.3 67.6
Open Source
10 SigLIP | Qwen2-7B LLaVA-OV 28.7 30.3 47.4 62.8 39.5 67.0
11 Qwen2.5ViT | Qwen2-7B Qwen2.5-VL 36.9 36.8 47.7 82.9 80.6 72.0
12 Qwen3ViT | Qwen3-8B Qwen3-VL 40.5 42.4 58.2 84.3 84.6 70.9
13 SigLIP | Gemma3-4B Gemma3 24.3 29.0 40.4 64.2 77.5 72.7

Table 1: Internal tasks comparison across model architectures and sizes. We report performance of vision
encoder and LLM combinations on three of our proposed evaluation sets (top row). Internal E-commerce Adaptation
models indicate VLMs fully trained top to bottom starting from pre-trained backbones, Open Source indicates
models not trained by us, the original model names are next to their architectural structure. Higher is better (↑).

merged) for better coverage. Cropped regions and
original images are then re-annotated by GPT-4.1,
yielding substantially higher-quality better labels.
More details in Appendix A.5.

3.2.4 Model Architectures
We compare several state-of-the-art (SOTA) model
components for our e-commerce VLM. For the
vision encoder, we experiment with SigLIP2-
SO400M-Patch14-384 (Tschannen et al., 2025)
and Qwen2.5 ViT (Bai et al., 2025). As text de-
coder, we compare Llama3.1-8B (Touvron et al.,
2023), e-Llama3.1-8B (Herold et al., 2025) an e-
commerce adapted version of Llama3.1 8B, Lil-
ium 1B/4B/8B (Herold et al., 2024) trained from
scratch for the e-commerce domain and Qwen3
4B/8B (Yang et al., 2025). Furthermore, we
also adapt fully fledged SOTA VLMs for cer-
tain tasks, namely Llama-3.1-Nemotron-Nano-
VL-8B-V1, Gemma3 4B/12B/27B (Gemma-Team,
2025), Qwen2.5VL-7B (Bai et al., 2025) and
Qwen3VL-8B (QwenTeam, 2025).

4 Experiments
In our Experiments section, we compare our e-
commerce adapted VLMs against existing ones
(Section 4.2), followed by an analysis of the im-
portance of vision encoders (Section 4.3) and text
decoders (Section 4.4). In the second part, we fo-
cus on the item intelligence use-case (Section 4.5).

4.1 Experimental Setup

All models that we trained are optimized as de-
scribed in Section 3.2. For training, we use

the NeMo (Kuchaiev et al., 2019) and LLaVA-
OneVision frameworks (Li et al., 2024a), using
the same loss objective. Training was conducted
on NVIDIA H100 GPUs (using up to 120 GPUs
connected via NVLink and InfiniBand). In addition
to our set of e-commerce benchmarks (see Section
3.1), we also evaluate all models on a comprehen-
sive set of public benchmarks. For details, see
Appendix A.2.

4.2 Comparison against existing VLMs
We first compare our initial internally trained VLM
SigLIP2 | Llama-3.1-8B against external VLMs
as shown in Table 2 row 14 for general-domain
benchmarks and in Table 1 row 1 for e-commerce
tasks. We find that newer SOTA external VLMs
like Qwen3-VL-8B outperform our internal model
on the majority general-domain benchmarks. How-
ever, on the e-commerce specific benchmarks, the
picture is quite different. While some external mod-
els do perform very well on Deep Fashion Under-
standing, they do fall behind on most e-commerce
specific benchmarks. This leads us to the conclu-
sion that we need to invest in building our own
customized VLM for relevant e-commerce tasks.
In the following sections, we determine the best
overall settings to accomplish this goal.

4.3 Importance of Vision Encoder
We begin this exploration by analyzing the impor-
tance of the vision encoder, comparing two archi-
tectures, SigLIP2 and Qwen2.5 ViT while keeping
the text encoder the same. On both e-commerce
tasks (compare Table 1 rows 2 & 3), and general
domain benchmarks (compare Table 2 rows 15 &
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Vision Encoder | LLM Multimodal General Understanding Vision OCR, Chat/Doc QA Reasoning e-Commerce

MMBench MME MME MMStar CVBench TextVQA AI2D MMMU eComMMMU
(dev) (Perc.) (Cogn.) (val) (val) (val) (test)

Internal E-commerce Adaptation
14 SigLIP2 | Llama-3.1-8B 75.8 1556.1 314.6 49.5 62.3 75.2 76.3 43.9 NA
15 SigLIP2 | e-Llama3.1-8B 76.9 1549.1 379.3 52.6 72.7 74.0 78.2 42.0 46.1
16 Qwen2.5ViT | e-Llama3.1-8B 71.7 905.8 333.2 53.6 61.6 65.2 76.6 39.7 45.9
17 SigLIP2 | Qwen-3-4B 81.0 1623.0 485.7 60.1 73.7 75.8 80.6 50.4 NA
18 SigLIP2 | Qwen-3-8B 82.5 1648.4 453.6 62.2 77.2 77.7 82.6 49.1 48.3
19 SigLIP2 | Lilium-1B 64.7 1383.5 278.9 39.0 57.4 66.4 63.9 35.4 45.6
20 SigLIP2 | Lilium-4B 75.5 1484.8 334.6 47.1 61.8 69.7 74.8 37.8 NA
21 SigLIP2 | Lilium-8B 77.4 1439.2 335.4 51.4 71.4 71.5 76.9 42.3 NA
22 SigLIP | Gemma3-4B 78.3 1617.9 433.2 54.9 69.8 76.6 80.7 43.8 43.5
Open Source
23 SigLIP | Qwen2-7B LLaVA-OV 76.4 1537.4 439.6 55.4 27.9 71.0 80.0 46.4 50.8
24 Qwen2.5ViT | Qwen2-7B Qwen2.5-VL 81.9 1677.7 654.6 63.1 32.8 82.9 82.8 50.9 40.6
25 Qwen3ViT | Qwen3-8B Qwen3-VL 84.0 1742.1 660.7 62.2 26.6 80.9 84.0 52.4 47.6
26 SigLIP | Gemma3-4B Gemma3 67.9 1202.1 398.6 36.5 11.4 62.1 71.2 39.7 34.7

Table 2: Public multimodal tasks comparison across model architectures and sizes. We report performance of
vision encoder and LLM combinations on public evaluation sets, we also report the split or metric in parenthesis (top
row). Internal E-commerce Adaptation models indicate VLMs fully trained top to bottom starting from pre-trained
backbones, Open Source indicates models not trained by us, the original model names are next to their architectural
structure and NA indicates results not available. Higher is better (↑).

16), the results are inconclusive, as there is no clear
winner between the two encoders. This highlights
the complicated relationship with the image modal-
ity and task definition, which we will also discuss
below for the item intelligence task. For example,
the native resolution feature of the Qwen2.5ViT
might be beneficial for tasks like aspect prediction,
where small image details might be important, how-
ever we observe weaker results in more reasoning-
oriented results in tasks like fashion understanding.

4.4 Importance of Text-Decoder
Comparing the impact of different LLMs when
used as backbone with same vision encoder, we
observe an influence of (a) domain knowledge of
the LLM, (b) general knowledge and (c) model
size, which we detail next.
E-commerce Knowledge Helps We compare
VLMs based on Llama-3.1 8B against the e-
Llama3.1-8B and Lilium-8B variants on the
general-domain benchmarks (see Table 2 rows 14,
15, 21), with similar performance. This makes
sense, as the underlying text-only LLMs do per-
form similar on general-domain text-based bench-
marks as well. However, when looking at e-
commerce specific performance (see Table 1 rows
1, 2, 8) we find that the e-commerce knowledge of
e-Llama and Lilium leads to a better adaptability.
Table 2, also shows on eComMMMU substantial
gains for Gemma3-4B (row 22 vs 26). Due to time
constraints we were not able to fully evaluate all
models (hence the NA), also we evaluate the use
slightly differently metrics than the paper. A deeper

discussion in Appendix A.8.

General Capability Helps To see if and how
the general-domain capabilities of the text decoder
influence final performance, we compare Qwen3
and Gemma3 models against previous generation
(e)-Llama and Lilium. The former are trained
on significantly more data, therefore they exhibit
higher performance on general domain text-only
benchmarks. Generally, looking at Table 2, and
also comparing model sizes, we find that better
capabilities of the text-decoder help improve per-
formance on general domain VLM benchmarks.
More interestingly, we find that they also lead to
improvements on some e-commerce specific tasks
(see Table 1), especially Aspect Prediction. To-
gether with the findings from Section 4.4, this leads
us to believe that further gains are possible using
a domain-adapted version of the Qwen3/Gemma3
text-decoders, which we leave to future work.

Model Size: Important for Some Tasks Investi-
gating the effect of the size of the text-decoder, we
find a consistent trend across both general-domain
(Table 2) and e-commerce-specific domain (Table
1). In both cases, larger models lead to stronger
performance. However, there seems to be a task-
depended threshold for which just increasing model
size no longer seems to help. For example, for the
Fashion subset of the Aspect Prediction task, going
from 1 billion to 4 billion parameters parameters
leads to improvements, while going from 4 billion
to 8 billion does not. The latter is also consistent
for both Lilium and the Qwen3 model families. A
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Model Name Multi-Image Item Intelligence

f1-score (↑) precision (↑) recall (↑) verifiable-correct (↑) verifiable-incorrect (↓) unverifiable (↓)

0-shot
27 Gemma3 4B 32.8 33.1 36.7 53.6 21.3 25.1
28 Gemma3 27B primary image only 25.5 52.1 18.3 71.6 24.5 3.9
29 Gemma3 27B 44.8 61.8 36.6 80.4 15.9 3.8
Finetuned
30 SigLIP2 | e-Llama3.1-8B 42.5 57.0 35.3 72.0 24.0 4.0
31 Qwen2.5ViT | e-Llama3.1-8B 28.7 60.4 20.4 72.2 26.0 1.9
32 Qwen2.5VL-7B 29.3 62.9 20.6 75.3 23.0 1.7
33 Llama-3.1-Nemotron-Nano-VL-8B-V1 50.9 63.3 44.0 79.2 18.9 1.9
34 Gemma3 4B 50.5 64.9 42.8 79.4 17.1 3.5
35 Gemma3 12B 51.8 67.7 43.5 81.3 15.7 3.1
36 Gemma3 27B 52.6 68.0 44.6 81.2 15.2 3.6
Finetuned with Better Labels
37 Gemma3 4B 53.8 68.1 49.6 82.7 15.9 2.0
38 Gemma3 12B 58.2 71.2 50.9 84.2 14.0 1.7
39 Gemma3 27B 58.8 71.0 51.9 85.2 13.1 1.6
40 Gemma3 4B pan&scan 56.9 68.3 50.5 83.1 15.1 1.8
41 Gemma3 4B image crops 58.0 69.5 51.5 84.7 13.7 1.6

Table 3: Multi-Image Item Intelligence Comparison. We report performance of different models on multiple types
of finetuning strategies (0-shot, Finetuned, Finetuned with Better Labels) over our multi-image item intelligence
benchmark. The italic next to the model names indicates different inference strategy.

similar trend can be seen on MME.

4.5 Item Intelligence
The Item Intelligence task extracts attributes tar-
geted at regulatory compliance questions. Our
baseline is a non-customized Gemma3-27B. In our
experiments, we show how we greatly improve
quality and efficiency by fine-tuning on this task,
while obtaining further improvements by modeling
for task-specific characteristics.

Single vs Multi-image We start by establishing
the 0-shot performance of the Gemma3-27B VLM
on the item intelligence task. We compare two
settings: (i) the model is given just the primary
image of the corresponding listing (ii) the model is
given the full set of images. From Table 3 row 28
& 29, we can see that it is definitely beneficial for
the model to have access to all existing images of a
listing. We also test the performance of the more
efficient Gemma3-4B model (row 27), but find the
model predictions to be of worse quality.

Fine-Tuning Helps Next, we compare fine-
tuning a model and compare against the zero-shot
approach from Section 4.5. We fine-tune a subset
of the models we discussed above for the general
e-commerce adaptation. As can be seen in Table
3 row 36, fine-tuning significantly improves per-
formance of the Gemma3-27B model. Further-
more, performance of the much smaller Gemma3-
4B VLM (row 34) is also strong after fine-tuning.
Other models like Qwen2.5ViT | e-Llama3.1-8B
and Qwen2.5VL-7B (ft) fall behind. Another big
advantage of fine-tuning is the greatly improved

inference efficiency. Due to smaller model size and
shorter prompt size, we achieve ca. 3.8x inference
speedup when replacing Gemma3-27B with the
finetuned Gemma3-4B model (see Table 4).

It Matters Where You Look In an effort to fur-
ther improve results, we test the image bounding
boxes approach outlined in Section 3.2.3, which
leads to better labels for training examples. As can
be seen from Table 3 rows 37 - 39, this approach
leads to significant improvements for all model
sizes. We also test including the image crops in
inference (row 41) and compare against the ‘Pan
& Scan’ feature from Gemma3 (row 40). We find
that both approaches improve performance, but our
more targeted cropping leads to stronger results.

5 Conclusion

We introduced a reproducible, backbone-agnostic
recipe for adapting open-weight VLMs to the
attribute-centric, multi-image, and noisy charac-
teristics of e-commerce. To evaluate this, we con-
structed a benchmark suite spanning Aspect Pre-
diction, Deep Fashion Understanding, Dynamic
Attribute Extraction and multi-image Item Intel-
ligence. Across extensive ablations we show
how targeted adaptation can deliver substantial
in-domain gains while preserving broad capabil-
ities. Lastly, in a production-style Item Intelligence
case study, targeted cropping plus improved la-
bels and fine-tuning yielded strong quality gains
and multiple times faster inference compared to
general-purpose VLMs.
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6 Limitations

Our study has the following limitations.

• (i) Monolingual scope. All model adaptation,
supervision, and evaluation were conducted in
English. Consequently, we do not characterize
cross-lingual transfer to product ontologies,
attribute surface forms, or unit/size conven-
tions that are language– and locale-specific
(i.e., multi-script OCR for size charts, EU/JP
sizing, or currency/decimal formats).

• (ii) Platform dependence. The instruction
corpus and benchmarks are sourced predom-
inantly from a single marketplace, and many
prompts/targets were curated or verified via
automated pipelines. This creates potential
distributional coupling to that platform’s tax-
onomy, seller conventions, imaging styles (stu-
dio vs. user-generated), and metadata den-
sity. This hinders portability to other mar-
ketplaces with different attribute schema or
listing norms remains uncertain.

• (iii) LLM-mediated supervision and eval-
uation. Portions of training signals (i.e.,
pseudo-labels, instruction filtering) and some
evaluations rely on LLMs. This introduces
annotator bias, style bias, and measurement
noise; moreover, evaluator–model family over-
lap can inflate or deflate measured gains due to
inductive-bias alignment in “LLM-as-judge”
scenarios.

• (iv) Coverage of phenomena. While broad,
our evaluation is not exhaustive: the Dynamic
Attribute Extraction (DAE) set is ∼ 1k ex-
amples and category coverage emphasizes
selected fashion and high-volume verticals.
As a result, performance on long-tail cate-
gories, rare attributes, region-specific variants,
heavily composited images, or atypical list-
ing styles is under-constrained. Overall, the
reported improvements should be interpreted
as evidence of promise under these conditions
rather than as guarantees of cross-lingual or
cross-platform robustness.

• (v) Long Image Sequence Handling. In sce-
narios with more than 10 images (rare), we
noticed our models may suffer from Out-of-
Memory (OOM) issues as well as long in-
ference times. This is particularly tricky for

Multi-Image Item Intelligence and eComM-
MMU benchmarks. While having 10 or more
images is rare, this can lead to issues in po-
tential production use-cases. While this could
be solved by training larger context LLMs or
through token efficient strategies (Zhang et al.,
2025), it is something worth addressing in the
future.
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A Appendix

A.1 Related Work (Continued)

Multi Purpose MLLMs Since the advent of Vi-
sual Instruction Tuning (Liu et al., 2023), many
have grasped the impact of combining CLIP Vi-
sion Encoders (Radford et al., 2021) with Large
Language Models (LLMs) (Radford et al., 2019;
Chiang et al., 2023; Touvron et al., 2023; Dubey
et al., 2024) to enable cross modality understanding
with LLMs. Most notably LLaVA (Liu et al., 2023)
and GPT4V (OpenAI et al., 2024), have paved the
way for more diverse and varied MLLMs. Recent
investigations have advanced along several comple-
mentary fronts. From a systematical decomposi-
tion of the training pipeline and characterization
of model behavior across a variety of pre-trained
backbones (McKinzie et al., 2024; Zhang et al.,
2024; Laurençon et al., 2024). to the efficient pro-
cessing of images spanning multiple resolutions
(Liu et al., 2024a; Wang et al., 2024; OpenGVLab-
Team, 2024) as well as the development of fully
open multimodal foundation models (Deitke et al.,
2024). Multimodal Large Language Models have
consistently achieved state-of-the-art results across
a broad spectrum of downstream applications, en-
compassing image captioning (Yu et al., 2022;
Chen et al., 2023a; Wan et al., 2024), visual ques-
tion answering (Liu et al., 2024a), image under-
standing (Liu et al., 2023; Tong et al., 2024), and
complex reasoning tasks (Xu et al., 2024).

E-commerce Model Adaptation General-
domain pretrained LLMs often struggle with
domain-specific tasks, motivating domain-specific
pretraining or targeted domain adaptation
(Lewkowycz et al., 2022; Chen et al., 2023b;
Rozière et al., 2023).

Pretraining a domain-specific LLM from scratch
results in the highest degree of adaptation, includ-
ing domain-specific knowledge, vocabulary, and
more (Wu et al., 2023; Li et al., 2023; Herold
et al., 2024). However, it is also extremely costly
and slow, and requires a huge amount of domain-
specific data.

As an alternative, continuous pretraining on in-
domain text or fine-tuning an existing model can
also substantially boost performance on domain-
specific tasks (Azerbayev et al., 2024; Shao et al.,
2024; Thulke et al., 2024; Herold et al., 2025), at
the cost of less overall customizability.
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Figure 3: Visual Breakdown of our benchmarks. We
choose four representative examples from each of our
proposed benchmarks to showcase the tasks.

A.2 General Domain Multimodal
Benchmarks

To evaluate our models on existing e-Commerce
tasks we choose eComMMMU (Ling et al., 2025),
one of the few comparing evaluation suits for
MLLMs in online shopping. It is comprised of
over 35k multi-image samples spanning over 8
tasks. Furthermore, we employ 8 other general mul-
timodal understanding benchmarks, ensuring close
monitoring of general performance. These are MM-
Bench (Liu et al., 2024b) covering object detec-
tion, text recognition, action recognition, among
many others, MMMU (Yue et al., 2024) evaluating
Mulimodal LLMs on perception, knowledge, and
reasoning, CVBench (Tong et al., 2024) evaluat-
ing visual-centered capabilities of our models, and
finally, MME (Fu et al., 2024), a comprehensive
benchmark dividing between perception and cogni-
tion tasks, with 15 subcategories. AI2D (Kembhavi
et al., 2016) a Diagram/ChartQA with 3,009 exam-
ples, and MMStar (Chen et al., 2024) 1.5k sam-
ples across 6 categories (Perception, Math, Science
& Tech, Logical, Instance Reasoning). TextVQA
(Singh et al., 2019) designed to stress-test capabili-
ties of VQA models in OCR, with 5k examples.

A.3 Methodology

A.4 Our E-commerce Benchmarks

Aspect Prediction We propose our Aspect Pre-
diction evaluation suite. This set is divided into

three different sub-parts, each tasked with a spe-
cific objective. The first set is comprised of 2600
general aspect prediction questions on almost all e-
commerce categories (collectibles, car parts, cards,
fashion, etc...). In the last two, we evaluate the
model’s ability to predict aspects in Fashion, set-
ting with and without additional textual contexts
provided by item title and category, both with 1600
examples. All three are evaluated through string
matching after post-processing. Although online
shopping is often dominated by fashion items, we
deem important to include evaluation sets which
could more accurately capture the broad spectrum
of online marketplaces.

Multi-image item intelligence Many attributes
related to product safety and compliance such as
certifications, ingredients, warning labels are not
provided by the item’s seller, and manual inspec-
tion is inherently slow and costly. To address this,
we propose a structured set designed to systemat-
ically extract and normalize visible information
into consistent JSON outputs, enabling stream-
lined verification and recall matching processes.
Our benchmark prioritizes product categories with
prominent packaging and labeling signals, includ-
ing toys, electronics, appliances, cosmetics, sup-
plements, batteries, PPE, and food items. It han-
dles diverse image sources such as product list-
ing galleries, detailed zoomed-in views, and user-
uploaded photographs. The resulting structured
schema encompasses essential data elements such
as Product Identifiers, Product Attributes, Product
Origin, and Regulatory Safety, ensuring accurate
and consistent outputs. We evaluate through LLM-
as-a-judge.

Deep Fashion Understanding Characterizing
complex fashion features is a fundamental com-
ponent of e-commerce assistants. To accurately
evaluate deep fashion understanding, we designed
a specialized sub-benchmark consisting of 3k sam-
ples divided into four distinct subsets: Apparel Men
Shirts, Apparel Women Tops, Handbags, and Sneak-
ers. Each subset targets critical attributes relevant
to the product type, structured into clear classifica-
tion categories. For instance, Apparel Men Shirts
are evaluated based on Sleeve Length, Neckline,
Pattern, and Color, with predefined classes such
as ’Short Sleeve’, ’Crew Neck’, ’Striped’, and ’Or-
ange’. Apparel Women Tops share similar but more
extensive attribute categories, including additional
neckline and pattern options like ’Off the Shoul-
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der’ and ’Paisley’. Handbags and Sneakers subsets
specifically focus on accurately identifying brand
labels, such as ’Louis Vuitton’ or ’Nike’. Evalu-
ation involves prompting the model to categorize
items precisely according to the provided attribute
classes.

Dynamic Attribute Extraction Extracting vi-
sual item attributes from an image is a complicated
yet essential task. This evaluation set benchmarks
a model’s ability to enumerate and structure all vi-
sually grounded attributes from an image without
a predefined schema. Each instance is prompted
only once, requiring the model to decide which
properties are salient, choose attribute names, and
serialize values as key–value pairs (e.g., format, edi-
tion, material, artist, counts, genres, brand, model).
The benchmark comprises 1,000 synthetically gen-
erated with GPT-4o (gpt, 2024), human-verified
examples and emphasizes attributes that are strictly
supported by the pixels. Unlike fixed-ontology
extraction, Dynamic Attribute Extraction (DAE)
stresses e-Commerce generalization by incentiviz-
ing exhaustive yet faithful outputs, avoiding hallu-
cinated fields. A typical response for a text-rich
object, such as a DVD cover, would be a compact
JSON record as show in Appendix 3. By design,
DAE probes the practical skill needed in cataloging,
document understanding, and product intelligence
workflows where schemas are fluid and attributes
must be discovered on the fly.

A.5 Item Intelligence Fine-tuning
Using both the original images and all derived
crops for inference is computationally expensive,
as the Gemma-3 image encoder assigns a fixed 256
visual tokens per image, causing inference cost
to scale linearly with the number of images, even
when many of them are small. On our training
dataset, this resulted in a median of 12 and a max-
imum of 43 images per item. To address this, we
construct crops covering the regions of interest opti-
mized for the Gemma-3 encoder by identifying the
smallest enclosing square that covers all bounding
boxes, consistent with the model’s square image
format. Finally, we apply a lightweight deduplica-
tion step using perceptual hashing (pHash) (Zauner,
2010), reducing the number of images per item to
a median of four and a maximum of nine.

A.6 Inference Speed Comparison

Model sec/example

0-shot
Gemma 27B 25.5
Finetuned
Gemma 27B 19.3
Gemma 4B 6.7

Table 4: Inference speed comparison. We report the
speeed comparison on the Multi-Image Item Intelli-
gence task between the 0-shot Gemma 27B model and
the 4B and 27B finetuned variants. Experiments were
conducted on a single A100 GPU using a recent version
of vLLM.

A.7 Our Approach to E-commerce
Adaptation

Our mid-stage datasets:
- json_path: ./llava_ov/LLaVA-ReCap-558K.

↪→ json
sampling_strategy: all

- json_path: ./llava_ov/LLaVA-ReCap-118K.
↪→ json
sampling_strategy: all

- json_path: ./llava_ov/LLaVA-ReCap-CC3M.
↪→ json
sampling_strategy: all

- json_path: ./llava_ov/
↪→ synthdog_en_processed.json
sampling_strategy: all

Our single-image LLaVA-OneVision sets for
↪→ visual instruction tuning:

- json_path: ./llava_ov/meta_ov/LLaVA-
↪→ OneVision-Data_mavis_math_metagen.json
sampling_strategy: "first:10%"

- json_path: ./llava_ov/meta_ov/LLaVA-
↪→ OneVision-Data_mavis_math_rule_geo.json
sampling_strategy: "first:10%"

- json_path: ./llava_ov/meta_ov/LLaVA-
↪→ OneVision-Data_VisualWebInstruct(
↪→ filtered).json
sampling_strategy: "all"

- json_path: ./llava_ov/meta_ov/LLaVA-
↪→ OneVision-Data_chrome_writting.json
sampling_strategy: "first:20%"

- json_path: ./llava_ov/meta_ov/LLaVA-
↪→ OneVision-Data_iiit5k.json
sampling_strategy: "first:20%"

- json_path: ./llava_ov/meta_ov/LLaVA-
↪→ OneVision-Data_hme100k.json
sampling_strategy: "first:10%"

- json_path: ./llava_ov/meta_ov/LLaVA-
↪→ OneVision-Data_orand_car_a.json
sampling_strategy: "first:10%"

- json_path: ./llava_ov/meta_ov/LLaVA-
↪→ OneVision-Data_llavar_gpt4_20k.json
sampling_strategy: "first:10%"

- json_path: ./llava_ov/meta_ov/LLaVA-
↪→ OneVision-Data_ai2d(gpt4v).json
sampling_strategy: "all"

- json_path: ./llava_ov/meta_ov/LLaVA-
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Figure 4: Internal Single-Image Visual Instruction Tuning Set. We break down the components of our internal
single-image instruction tuning set. The pie chart on the left shows the percentages of tasks in our set. On the right
we breakdown each tasks with its own sub tasks with the total number of instructions in parenthesis.

↪→ OneVision-Data_infographic_vqa.json
sampling_strategy: "all"

- json_path: ./llava_ov/meta_ov/LLaVA-
↪→ OneVision-Data_infographic(gpt4v).json
sampling_strategy: "all"

- json_path: ./llava_ov/meta_ov/LLaVA-
↪→ OneVision-Data_lrv_chart.json
sampling_strategy: "all"

- json_path: ./llava_ov/meta_ov/LLaVA-
↪→ OneVision-Data_lrv_normal(filtered).
↪→ json
sampling_strategy: "first:10%"

- json_path: ./llava_ov/meta_ov/LLaVA-
↪→ OneVision-Data_scienceqa(nona_context).
↪→ json
sampling_strategy: "first:10%"

- json_path: ./llava_ov/meta_ov/LLaVA-
↪→ OneVision-Data_allava_instruct_vflan4v.
↪→ json
sampling_strategy: "first:30%"

- json_path: ./llava_ov/meta_ov/LLaVA-
↪→ OneVision-Data_allava_instruct_laion4v.
↪→ json
sampling_strategy: "first:30%"

- json_path: ./llava_ov/meta_ov/LLaVA-
↪→ OneVision-Data_textocr(gpt4v).json
sampling_strategy: "first:10%"

- json_path: ./llava_ov/meta_ov/LLaVA-
↪→ OneVision-Data_ai2d(internvl).json
sampling_strategy: "first:10%"

- json_path: ./llava_ov/meta_ov/LLaVA-
↪→ OneVision-Data_textcaps.json
sampling_strategy: "first:10%"

- json_path: ./llava_ov/meta_ov/LLaVA-
↪→ OneVision-Data_ureader_cap.json
sampling_strategy: "first:10%"

- json_path: ./llava_ov/meta_ov/LLaVA-
↪→ OneVision-Data_ureader_ie.json
sampling_strategy: "first:10%"

- json_path: ./llava_ov/meta_ov/LLaVA-
↪→ OneVision-Data_vision_flan(filtered).
↪→ json
sampling_strategy: "all"

- json_path: ./llava_ov/meta_ov/LLaVA-
↪→ OneVision-Data_mathqa.json
sampling_strategy: "all"

- json_path: ./llava_ov/meta_ov/LLaVA-
↪→ OneVision-Data_geo3k.json
sampling_strategy: "all"

- json_path: ./llava_ov/meta_ov/LLaVA-
↪→ OneVision-Data_geo170k(qa).json
sampling_strategy: "first:10%"

- json_path: ./llava_ov/meta_ov/LLaVA-
↪→ OneVision-Data_geo170k(align).json

sampling_strategy: "first:10%"
- json_path: ./llava_ov/meta_ov/LLaVA-

↪→ OneVision-Data_sharegpt4o.json
sampling_strategy: "all"

- json_path: ./llava_ov/meta_ov/LLaVA-
↪→ OneVision-Data_sharegpt4v(coco).json
sampling_strategy: "all"

- json_path: ./llava_ov/meta_ov/LLaVA-
↪→ OneVision-Data_sharegpt4v(knowledge).
↪→ json
sampling_strategy: "all"

- json_path: ./llava_ov/meta_ov/LLaVA-
↪→ OneVision-Data_sharegpt4v(llava).json
sampling_strategy: "all"

- json_path: ./llava_ov/meta_ov/LLaVA-
↪→ OneVision-Data_sharegpt4v(sam).json
sampling_strategy: "all"

- json_path: ./llava_ov/meta_ov/LLaVA-
↪→ OneVision-Data_CLEVR-Math(MathV360K).
↪→ json
sampling_strategy: "first:10%"

- json_path: ./llava_ov/meta_ov/LLaVA-
↪→ OneVision-Data_FigureQA(MathV360K).json
sampling_strategy: "first:10%"

- json_path: ./llava_ov/meta_ov/LLaVA-
↪→ OneVision-Data_Geometry3K(MathV360K).
↪→ json
sampling_strategy: "first:10%"

- json_path: ./llava_ov/meta_ov/LLaVA-
↪→ OneVision-Data_GeoQA+(MathV360K).json
sampling_strategy: "first:10%"

- json_path: ./llava_ov/meta_ov/LLaVA-
↪→ OneVision-Data_GEOS(MathV360K).json
sampling_strategy: "all"

- json_path: ./llava_ov/meta_ov/LLaVA-
↪→ OneVision-Data_IconQA(MathV360K).json
sampling_strategy: "first:5%"

- json_path: ./llava_ov/meta_ov/LLaVA-
↪→ OneVision-Data_MapQA(MathV360K).json
sampling_strategy: "first:10%"

- json_path: ./llava_ov/meta_ov/LLaVA-
↪→ OneVision-Data_PMC-VQA(MathV360K).json
sampling_strategy: "first:1%"

- json_path: ./llava_ov/meta_ov/LLaVA-
↪→ OneVision-Data_Super-CLEVR(MathV360K).
↪→ json
sampling_strategy: "first:10%"

- json_path: ./llava_ov/meta_ov/LLaVA-
↪→ OneVision-Data_TabMWP(MathV360K).json
sampling_strategy: "first:10%"

- json_path: ./llava_ov/meta_ov/LLaVA-
↪→ OneVision-Data_UniGeo(MathV360K).json
sampling_strategy: "first:10%"

- json_path: ./llava_ov/meta_ov/LLaVA-
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↪→ OneVision-Data_VizWiz(MathV360K).json
sampling_strategy: "first:10%"

- json_path: ./llava_ov/meta_ov/LLaVA-
↪→ OneVision-Data_image_textualization(
↪→ filtered).json
sampling_strategy: "first:20%"

- json_path: ./llava_ov/meta_ov/LLaVA-
↪→ OneVision-Data_ai2d(cauldron,
↪→ llava_format).json
sampling_strategy: "all"

- json_path: ./llava_ov/meta_ov/LLaVA-
↪→ OneVision-Data_chart2text(cauldron).
↪→ json
sampling_strategy: "first:10%"

- json_path: ./llava_ov/meta_ov/LLaVA-
↪→ OneVision-Data_chartqa(cauldron,
↪→ llava_format).json
sampling_strategy: "first:10%"

- json_path: ./llava_ov/meta_ov/LLaVA-
↪→ OneVision-Data_diagram_image_to_text(
↪→ cauldron).json
sampling_strategy: "all"

- json_path: ./llava_ov/meta_ov/LLaVA-
↪→ OneVision-Data_hateful_memes(cauldron,
↪→ llava_format).json
sampling_strategy: "first:10%"

- json_path: ./llava_ov/meta_ov/LLaVA-
↪→ OneVision-Data_hitab(cauldron,
↪→ llava_format).json
sampling_strategy: "first:10%"

- json_path: ./llava_ov/meta_ov/LLaVA-
↪→ OneVision-Data_iam(cauldron).json
sampling_strategy: "first:10%"

- json_path: ./llava_ov/meta_ov/LLaVA-
↪→ OneVision-
↪→ Data_infographic_vqa_llava_format.json
sampling_strategy: "first:10%"

- json_path: ./llava_ov/meta_ov/LLaVA-
↪→ OneVision-Data_intergps(cauldron,
↪→ llava_format).json
sampling_strategy: "first:10%"

- json_path: ./llava_ov/meta_ov/LLaVA-
↪→ OneVision-Data_mapqa(cauldron,
↪→ llava_format).json
sampling_strategy: "first:10%"

- json_path: ./llava_ov/meta_ov/LLaVA-
↪→ OneVision-Data_rendered_text(cauldron).
↪→ json
sampling_strategy: "first:10%"

- json_path: ./llava_ov/meta_ov/LLaVA-
↪→ OneVision-Data_robut_sqa(cauldron).json
sampling_strategy: "first:10%"

- json_path: ./llava_ov/meta_ov/LLaVA-
↪→ OneVision-Data_robut_wikisql(cauldron).
↪→ json
sampling_strategy: "first:10%"

- json_path: ./llava_ov/meta_ov/LLaVA-
↪→ OneVision-Data_screen2words(cauldron).
↪→ json
sampling_strategy: "first:10%"

- json_path: ./llava_ov/meta_ov/LLaVA-
↪→ OneVision-Data_tabmwp(cauldron).json
sampling_strategy: "first:5%"

- json_path: ./llava_ov/meta_ov/LLaVA-
↪→ OneVision-Data_tallyqa(cauldron,
↪→ llava_format).json
sampling_strategy: "first:5%"

- json_path: ./llava_ov/meta_ov/LLaVA-
↪→ OneVision-Data_st_vqa(cauldron,
↪→ llava_format).json

sampling_strategy: "first:10%"
- json_path: ./llava_ov/meta_ov/LLaVA-

↪→ OneVision-Data_visual7w(cauldron,
↪→ llava_format).json
sampling_strategy: "first:10%"

- json_path: ./llava_ov/meta_ov/LLaVA-
↪→ OneVision-Data_visualmrc(cauldron).json
sampling_strategy: "first:10%"

- json_path: ./llava_ov/meta_ov/LLaVA-
↪→ OneVision-Data_vqarad(cauldron,
↪→ llava_format).json
sampling_strategy: "first:10%"

- json_path: ./llava_ov/meta_ov/LLaVA-
↪→ OneVision-Data_vsr(cauldron,
↪→ llava_format).json
sampling_strategy: "first:10%"

- json_path: ./llava_ov/meta_ov/LLaVA-
↪→ OneVision-Data_vistext(cauldron).json
sampling_strategy: "first:10%"

- json_path: ./llava_ov/meta_ov/LLaVA-
↪→ OneVision-Data_websight(cauldron).json
sampling_strategy: "first:10%"

A.8 Experiments
eComMMMU Given the similar goals of eCom-
MMMU (Ling et al., 2025) and our work, we de-
cided to include it within our general benchmarks.
As it is apparent from Table 2, there are some in-
consistencies in our evaluations. First, due to time
constraints we were not able to fully evaluate all
models on this benchmark. This is why 1 and 5
show only a subset of models. Secondly, we made
amendments on (a.) the amount of images for each
example and (b.) the final Average metric. For (a.)
the eComMMMU paper uses either the main im-
age or an (automatically) relevance-filtered subset
which is not public. We first tried to include all im-
ages but hit Out-of-Memory issues. Some test-set
examples contained north of 10 images. Due to our
models context-sizes, we could not concurrently
consider samples with more than 10 images. Thus
we capped the amount of images to 10 removing
all excess, but keeping all textual examples. The
second (b.) was a design choice on our side. We
wanted to avoid to use the ’average model rank’ for
reproducibility and reporting purposes. We thus
performed a weighted average across all tasks. This
is what is shown in Table 1 and as Avg. in Table 5.

Our hope is that we can overcome the scale is-
sues for the final version of the paper, and con-
tribute to an evaluation setting that is as conducive
as possible to third-party model evaluations usind
eComMMMU as a benchmark for multimodal
LLMs.
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Vision Encoder | LLM eComMMMU (GTS)

AP BQA CP SR MPC PSI SA PRP Avg.

Internal E-commerce Adaptation
42 SigLIP2 | In-house-LLM-A 36.7 19.5 50.1 4.2 63.3 43.3 64.3 42.5 46.1
43 Qwen2.5ViT | In-house-LLM-A 52.5 18.8 49.5 4.6 61.6 65.2 76.6 39.7 45.9
44 SigLIP2 | Qwen-3-8B 61.8 35.6 50.7 8.4 64.9 31.6 70.2 20.4 48.3
45 SigLIP2 | In-house-LLM-B-1B 33.5 17.7 50.5 4.5 51.7 77.1 12.5 51.9 45.6
46 SigLIP | Gemma3-4B 59.3 34.8 51.1 6.7 63.9 26.0 50.2 13.8 43.5
Open Source
47 SigLIP | Qwen2-7B LLaVA-OV 33.7 20.5 50.5 5.6 65.1 76.8 34.7 50.3 50.8
48 Qwen2.5ViT | Qwen2-7B Qwen2.5-VL 31.2 46.2 32.5 10.0 65.7 26.9 58.0 37.0 40.6
49 Qwen3ViT | Qwen3-8B Qwen3-VL 54.3 38.6 52.4 11.9 64.2 30.4 73.0 26.5 47.6
50 SigLIP | Gemma3-4B Gemma3 45.2 32.5 50.3 11.0 39.7 29.9 49.0 14.6 34.7

Table 5: eComMMMU Full sub-tasks results. We report performance of different models on eComMMMU
benchmark the GTS subset with multiple image per sample. We show performance on all sub-tasks (AP =
answerability prediction , BQA = binary question answering , CP = click through prediction, SR = sequential
recommendation, MPC = multiclass product classification, PSI = production substitute identification, PRP = product
relation prediction, SA = sentiment analysis). For SR we report the Recall@1 score, whereas for all others accuracy.
The Average (Avg) is calculated weighting based on the amount of samples per sub-task taking SR into account as
well. The italic next to the model names indicates different inference strategy.
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